A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints

نویسندگان

  • Bin Hu
  • Peter Seiler
  • Anders Rantzer
چکیده

We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump system theory with several simple quadratic inequalities to derive sufficient conditions for convergence rate certifications of the proposed jump system model under various assumptions (with or without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs) whose size roughly scale with the size of the training set. We make use of the symmetry in the stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes are at most 3×3. We solve these small LMIs to provide analytical proofs of new convergence rates for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods, and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is that the proposed analysis can be automated for a large class of stochastic methods under various assumptions (with or without individual convexity, etc).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling

The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches‎. ‎In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques‎. ‎Jump processes are applied to model different and complex situations in cyber games‎. ‎Applying jump processes we propose some m...

متن کامل

Location and Capacity of UPFC to Improve the Operation Power System Using a Grasshopper Optimisation Algorithm

Unified Power Flow Controller (UPFC) is one of the most efficient FACTS devices that can be individually or combinatorial on all effective parameters in the transmission power of the transmission lines. With the flexibility of effective parameters in power passage, the power system operation can be improved. in this study, the optimization algorithm based on location and optimal capacity of UPF...

متن کامل

THIN WALLED STEEL SECTIONS’ FREE SHAPE OPTIMIZATION USING CHARGED SYSTEM SEARCH ALGORITHM

Graph theory based methods are powerful means for representing structural systems so that their geometry and topology can be understood clearly. The combination of graph theory based methods and some metaheuristics can offer effective solutions for complex engineering optimization problems. This paper presents a Charged System Search (CSS) algorithm for the free shape optimizations of thin-wall...

متن کامل

Designing Stochastic Cell Formation Problem Using Queuing Theory

This paper presents a new nonlinear mathematical model to solve a cell formation problem which assumes that processing time and inter-arrival time of parts are random variables. In this research, cells are defined as a queue system which will be optimized via queuing theory. In this queue system, each machine is assumed as a server and each part as a customer. The grouping of machines and parts...

متن کامل

Stochastic Model Predictive Control for Constrained Networked Control Systems with Random Time Delay

In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system’s trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017